Gratitude: A Clean Wind to Blow Away the Fog

Gratitude aligns us with the will of God

It’s a fair bet that all of us, at some point in our lives, have found ourselves wondering about God’s will for our lives. Every so often, we hit those crisis moments; the trail forks and we wonder if God would have us follow the left path or the right… or does he want us to double back? Maybe he would have us break away altogether and start crashing through the undergrowth!

 In these moments, I’ve always found comfort in a little Scripture verse found in I Thessalonians Chapter 5. While it may not speak to the direction I should take in this or that particular situation, it absolutely addresses the manner in which I should make my choice.

 “…in everything give thanks; for this is the will of God in Christ Jesus for you.” (ESV)

 In everything give thanks! Whether we choose to go left or right or even experience the agony of retracing our steps, we can know with certainty that doing it with a grateful heart is the will of God.

Gratitude expands our perspective

In my own experience, I’ve found that gratitude has a powerful way of clearing the fog, allowing me to see more clearly where I am. Gratitude forces my thoughts away from myself, away from my problems, away from my pain, and it directs my attention outward. Whether my thankfulness is directed outward to those around me or outward to the Lord himself, that outward shift in attitude is always a win. In fact, I would suggest that it is impossible to maintain selfish or fearful thoughts while one is being grateful. Gratitude is a clean and refreshing wind blowing through the stagnant, self-centered caverns of our souls.

Gratitude transforms our daily lives

As I mused about gratitude and its role in our lives, I couldn’t help but seek out our own Middle School teacher, Carri Svoboda. Back in January 2013, Ms. Svoboda began a new habit: keeping a daily gratitude journal. Her first entry read: “Beginnings and fresh starts. I am grateful that we have an endless number of opportunities to start fresh, to begin again. We don’t only have new years and new seasons. We have new beginnings every day.” Her original inspiration was to see if she could hit the 1,000-entries mark.

Eight years and 17 filled-out journals later, Ms. Svoboda is currently nearing entry number 12,500. In her words, “I’ve discovered not just that I am grateful, but that expressing gratitude creates a more grateful heart. Keeping a record of blessings has not only transformed my perspective on each day, but it has transformed me.”

A practical guide for focusing on gratitude 

Ms. Svoboda gave me some pointers to share for those who might consider beginning a practice to focus on gratitude: 

  • Embed it into an existing ritual or begin one—a cup of tea (or coffee) never hurts. I write my list in the mornings because that is when I practice the spiritual disciplines of meditation, prayer, and study. But I could just as easily create a nighttime ritual or a mid-day ritual. It just needs to be a time to which you can commit.
  • Nothing is off limits. If you are grateful for the morning sunshine, that is just as valid as being grateful for your children. It is the gratitude, not the degree of gratitude that matters.
  • If you miss a day, who cares? This is for you, not for a grade. Writing in your gratitude journal is not securing your place in heaven. This is about your transformation, not your salvation.
  • If you have children, it could be a rich and wonderful experience to keep a list as a family. Maybe it is something you do at the dinner table each night and you keep track in a family gratitude journal.

With all of these encouragements, the only thing left for us to do is to join in. You don’t need to be particularly skillful, intelligent, or even practiced; a six-year-old child can begin this habit just as well as a sixty-year-old adult.

 How else to close these thoughts but with sincere thanks? I thank the Lord for the good community I enjoy each and every day, a community I too often take for granted. I thank him for planting me in a place where learning is valued and people are cherished.

What are you grateful for today?

Rodney Meadth
Rodney Meadth

Middle School and Upper School Principal at Providence School

Classroom Standing Desk: Delivered!

 We’ve written on this blog about the completion, delivery, and feedback for PathPoint’s wheelchair computer desk, but what about the other project intended for Mrs. Jones? We’re glad to report that this project has now been constructed, assembled, and painted according to the student plans and delivered to a grateful 4th grade teacher!

Like all of our COVID-friendly projects this year, the design work was done by students: Alan, Davis, Eliana, Isaiah, Kaitlyn, Kassy, Sam, Zach, and Pedro. Their original concepts were submitted as sketches and miniature models back in October 2020.

Alan’s early LEGO concept (October 2020)

Mrs. Jones reviewed these concepts and filtered out the ones that were less suitable. The result of this, plus another online design charrette, was a series of simple sketches and a collaborative CAD model in Onshape, which can be accessed here.

The result of a design charrette in December 2020
The final collaborative CAD model emerges

Mr. Meadth acted as fabricator for this project, with Zach in 11th grade contributing a beautiful hand-finished red oak table surface. Angel, while not an actual member of this project, worked after school to attach caster wheels and paint according to Mrs. Jones’ requested color scheme.

The linear actuator motor, intended as a replacement for an
armchair recliner and capable of over 150 lb of force
The actuator is sandwiched between
two pieces of plywood
Zach’s table surface attached and
actuator extended
In retracted position

From the very beginning, these mechanical furniture designs needed to closely follow the advice given over two thousand years ago by the Roman architect, Vitruvius. Vitruvius was primarily concerned with buildings for home and public use, but his timeless principles seem to fit this project particularly well: firmitas, utilitas, venustas. Translated as “strength, utility, beauty”, this triad neatly underscores the challenges and requirements of Mrs. Jones’ desk.

Strength: Can a desk be put on wheels and still be stable and secure? How can you design a desk that changes its size and shape without risking damage to users and their property (like a laptop that slips off and smashes!)? When will a cantilever design be so audacious as to become a tipping hazard?

Utility: What features are necessary and useful for any teacher? How to incorporate a maximum amount of storage while allowing room for the electrical mechanism? What are the exact heights that Mrs. Jones requires for her sitting and standing? How much desk space is enough?

Beauty: How do you hide away the necessary mechanical equipment? What should be the focal point of this design to catch the eye? What color and trim will best fit a classroom and suit the client?

Carving out a shallow hole for the wooden handle
The wooden handle structure ready for installation
(note the dowels and holes)
A strap clamp to secure the handle while gluing

Angel attaches the caster wheels

The rubber stoppers are screwed into place after painting
With the door and shelving installed, this is ready for delivery!

In March 2021, after six months of work, it was finally time to deliver the finished product. With the help of Mr. Knoles, the Lower School Principal, Mr. Meadth surprised the entire class one morning with the desk delivery. Mrs. Jones was delighted to receive the desk, and promptly filled it with her hefty teacher editions—which definitely helped as a counterbalance to the cantilever design!

The crew proudly presents their product!
Mr. Meadth surprises Mrs. Jones with the
finished desk!
“So I just press here…?”
Loaded up and ready to go in 4th grade
This project shows us once again that engineers, mathematicians, scientists, and technologists are uniquely poised to love those around them. As we often discuss in the Providence Engineering Academy, it is only those with a particular type of training and set of skills who can turn good intentions into deliverable outcomes. To quote Christian philosopher Etienne Gilson, “piety is no substitute for technique.”

Thank you, Mrs. Jones for allowing us to partner with you in such an interesting project this year. It was an admirable test of the students’ skills as they sketched concepts, designed CAD models, collaborated interactively, calculated forces and moments, and put saw to wood. Well done to each student who contributed—you are accomplishing great things.

Update: Wheelchair Computer Desk Feedback

 Back in February, we posted a blog describing the completion and delivery of our wheelchair computer desk to PathPoint. After a few weeks, we were finally able to get Mr. Meadth and Mr. Gil Addison together with his team to go over the design and get that long-awaited feedback.

Feedback from the end user is critical to the entire design process. For this particular project, the Academy had all sorts of unanswered questions: will the design function as requested? Does the screen angle suit a typical wheelchair user? How convenient is the keyboard position? Is the mechanical motion safe enough for general usage? Would a typical PathPoint resident be able to operate the remote control? What improvements could be made? While we don’t currently plan on producing a Mk II, one project often leads into another and we improve our products by understanding their strengths and weaknesses.

Gil Addison (far right) together with his grateful staff

Mr. Meadth (center) joins in for the camera

Gil met Mr. Meadth together with six of the PathPoint staff members and together they went over the particulars of the design. You can watch the entire footage here, and a summary of design points is also included below.

As we draw this project to a close, thank you to PathPoint for being willing to work with us in an ongoing fashion! May our students always be inspired to use their God-given gifts with training and understanding, and we hope that the PathPoint residents are blessed through this simple gift.

Design Feedback

Screen Angle: Although the older iMac that was tested tended to slip on its hinge, once kept in place, the screen was easily able to tilt downwards to any wheelchair user at a suitable viewing angle.

Gil tests out the seated angle

Standing Height: The PathPoint ambulatory staff members found the maximum standing height to be comfortable and sturdy.

PathPoint staff test the standing height

Motor Function: Although the motor sounds like it is straining to raise the desk, and there is a slight but noticeable bending of the wooden attachment, the motor appears to be able to operate the desk satisfactorily.

Desk Size: The PathPoint team felt that the final desk size was a little smaller than they would have liked; although the keyboard and mouse did fit on it, there was not much room to move the mouse. Possible solutions: use a trackpad instead, attach a larger plywood sheet to that desk, or rebuild that component.

Operability: It is very easy for an ambulatory user to operate, although the small remote with small buttons may be difficult for some users. The desk adjustment at the front might be hard to operate, but it probably doesn’t need to be used often after being set in one position. Possible solutions: rebuild the remote with larger buttons that still trigger the same microswitches, build an app that uses the same remote frequency.

Other Improvements: The iMac base barely fit under the clamp; the wooden piece at the back that gets in the way could be chamfered down. The same wooden piece that flexes slightly could be doubled up. A spherical router bit could carve out a channel in the desk for the keyboard to fit into. The carriage bolts for the rear clamp could be longer to permit a thicker desk.

Wheelchair Computer Desk: Delivered!

 Following on from our last post, we’d like to provide an update: the custom computer desk for Gil Addison at PathPoint was recently delivered, bringing that particular project to a close. This desk raises up and down to any given height using an electrically driven linear actuator. The wheelchair user carries the remote control key fob, allowing complete adjustment from near or far. The desk is intentionally designed to tip the computer forwards to face down towards the user, as many wheelchairs seat the occupant in a reclined position.

You can play with the online CAD model here.

At the time of this writing, we are still waiting for feedback on the end result and photos of the desk in action. But in the meanwhile, enjoy some photos of the students as they put together the final product and examined the results. Thank you, Gil, for helping us execute such a meaningful project!

The final product assembled in the workshop, after some
final modifications. The actuator placement had to be changed
in order to create more torque to lift the table.

After disassembly, Nolan (senior) set to
work applying the protective oil to the
upper table surface

Abby (freshman) oils the lower base piece

After all pieces were oiled, Angel (sophomore) reassembled
the entire structure together with Mr. Meadth

A few more bolts to go–almost there!

The finished product as attached to a typical household
table, keyboard shown

The finished product in the full lowered position

Teleios, Hunter, and Abby (freshmen) get their first
look at the end result on the day of delivery

Joshua and Nolan (seniors) test out the remote control

The whole team from left to right: Hans, Abby, Hunter,
Teleios, Mr. Meadth, Angel, Joshua, and Nolan
(James was also in this group); note an iMac computer
attached as per intended use

Service Project: Mechanical Furniture

Freshmen Hans and Hunter, tools out

Even in the midst of a global pandemic, the Providence Engineering Academy follows a particular philosophy that transcends circumstances. While many robotics clubs and engineering programs might teach physics, maker skills, CAD, and more, we believe that these elements—fascinating as they may be—are only the means to an end. In the latest application form for the coming year, there are six “big ideas” listed; Big Idea Number 1 is that service matters:

As Christians, we have an obligation to turn our skills outward to the world around us; we learn not for our own sakes.

While we may not be allowed to mix cohorts or share equipment, the seventeen dedicated upper school students are committed to loving their community using their math, physics, coding, CAD, robotics, and maker skills.

Early on in the school year, we found two willing partners in this process: one was Mr. Gil Addison of PathPoint, an organization serving at-home and on-site residents, many of whom use a wheelchair each day due to their limited mobility. The other was Mrs. Christa Jones, 4th Grade teacher in the Providence Lower School. Both of these clients had distinct requests for custom-made furniture and it was the perfect opportunity for our students to put their new-found statics knowledge to the test (statics is the study of physically balanced situations where the net force is zero, such as buildings and bridges).

Mrs. Christa Jones, 4th Grade Providence Teacher

Mr. Gil Addison, PathPoint

Mr. Addison wanted a custom-made desk for an iMac computer that could be set to a lower height for a wheelchair occupant, and then back up to a standing desk height for an ambulatory user. Such a desk is hard to find in the current marketplace, and the engineering students saw an opportunity to provide something uniquely useful. The desk would be mechanically driven by a remote control, safe for an individual with limited dexterity, and functional to hold the computer at any height without concern.

By contrast, Mrs. Jones needed a new teaching desk at the front of her room to help meet the new style of a COVID year. This mobile desk would need to be equally useful in a standing or sitting position, for maximum versatility with her in-person and at-home students.

How to meet the needs of these clients in a year when the Engineering Academy is functioning in an independent-learning mode? How could we hold a meaningful design charrette when mixing between cohorts is prohibited? How can seventeen students come up with an agreed-upon detailed design and communicate it with the clients?

Answer: with creativity, technological tools, and a great attitude!

The students began by watching pre-recorded videos from the clients as they described their requests and necessary constraints to Mr. Meadth, the Academy Director. Mr. Meadth offered up some quick sketches and ideas in the videos to help sort through what would and wouldn’t work.

Early notes for Christa Jones’ project

Early notes for Gil Addison’s project

The students then used LEGO and other construction materials to make quick miniature mock-ups of their ideas, along with sketches to help show functionality. The images were sent to the clients to help them think through the possible solutions at hand. Another round of recorded video reviews with the clients, and then the real design work began!

Alan’s rolling cart concept

Kaitlyn’s desk concept with extendable platforms

Together with Mr. Meadth, the students worked together over Zoom and in their grade level cohorts, using the cloud-based CAD tools from Onshape. With each student taking ownership of several parts from the whole, they worked collaboratively to produce something that could be presented back to client as a visualization and to the fabricator as dimensioned drawings. Teleios in 9th Grade can create the top part of the desk, Angel in 10th Grade can make the support struts, and Nolan in 12th Grade can design the platform for the keyboard. All team members can see how the pieces fit together in advance, spotting potential problems before a single cut is made. This kind of ease, speed, and confidence in the design process simply did not exist even five years ago, and we are glad for it!

(The computer desk for Mr. Addison can be viewed live here, and the rolling cabinet for Mrs. Jones here. Both models are interactive.)

Mrs. Jones’ rolling cart CAD model

Mr. Addison’s adjustable computer desk CAD model

So where are we today? After purchasing the plywood, oak, mechanical actuators, caster wheels, and other bits and pieces, fabrication is underway. The clients are now eagerly awaiting the delivery of their prototypes. Gil Addison’s computer desk is nearly complete at the time of this article, and Zach in 11th Grade has put together a beautiful biscuit-joined red oak desk surface for Mrs. Jones’ rolling cabinet.

James assembles the clamping mechanism for Gil’s design

Teleios and Abby show off the parallel linkages

Nolan with the mechanical actuator

The vision nears reality for PathPoint!

Zach’s red oak table surface (3 ft long)

We’ll update this blog site as the projects are completed and delivered. For now, we’re just glad to be able to continue our exciting mission through a pandemic and out the other side. The exhortation in I Peter Chapter 4 seems particularly apt:

Each of you should use whatever gift you have received to serve others, as faithful stewards of God’s grace in its various forms. If anyone speaks, they should do so as one who speaks the very words of God. If anyone serves, they should do so with the strength God provides, so that in all things God may be praised through Jesus Christ.

Keep on serving with the strength God provides, engineering students! You’re making us all very proud. 

Physics, Freshmen, Furniture… and a Grant Win!

There hasn’t been a lot of action on this blog site so far this school year—but not because there aren’t things worth writing home about! As you can imagine, I (Mr. Meadth) have been much busier on the ground each day with cleaning and supervision, let alone teaching the engineering class.

But some things are worth documenting and celebrating. So let’s jump in!

1. Four New Freshmen

We took four new engineering students into the freshman class. A big welcome to Hunter, Abby, Teleios, and Eliana. These junior engineers are hitting the ground running, despite all the challenges. They are learning trigonometry before their time, taking baby steps into the world of computer-aided design (CAD), and just generally being awesome. Welcome, freshmen!

Hunter, Teleios, and Abby (Eliana couldn’t make this
photo, but she’s just as much a part of this group!)

2. College-Level Statics… From a Textbook

Despite my propensity to always design my own curriculum from the ground up, I tried something new this year: a textbook! It turns out this was the perfect year in which to do this, as it matched well to the statics studies that we’ve always done anyway. Don’t be led astray by the name—Statics for Dummies—the lighthearted tone helps high schoolers get through those pesky equations. For those engineering parents out there, you’ll find all of the fun you can handle in vector calculations, force couples, and free-body diagrams.

3. Independent Mode

This is a grand experiment, and one that we committed to from the start of the year. Can we commit to a full year of engineering studies in independent mode? Some would say that it’s never been tried, but this is the year to come up with new solutions! Despite the absence of stimulating classroom discussions, this has allowed students to take seven classes plus engineering, and it allows students to watch at their own pace. Students have watched 18 videos so far this year, and responded with written assignments and discussion boards. They are now eagerly discussing their community design project in a shared Google Doc, which brings us to Number 4…

Acceleration sums in three dimension, anyone?

If you can’t find the centroid of a composite area,
you just can’t call yourself an engineer

4. Community Design Project

I’m so happy with how this project is rolling forward! We have two “clients”, Mrs. Christa Jones on the San Roque campus and Mr. Gil Addison at PathPoint, who works with residents in wheelchairs. Our student teams are busily designing an adjustable standing desk for Mrs. Jones and an adjustable computer desk for Mr. Addison. Both of these designs are required to involve electrical/mechanical aspects, such as motorized lifts or built-in LED lighting. Once the student teams finalize their designs, complete with drawings and CAD models, I (Mr. Meadth) will be building their designs myself—in the interest of staying as contact-less as possible.

5. Lots of Publicity

We’ve received a surprising amount of national-level publicity lately. Our students use the CAD platform Onshape, and Onshape reached out to us to record a video and write a blog article. The video has been up for a over a month now, and the blog article will be published soon. Our Academy was also mentioned in another national publication by the American Institute of Aviation and Aeronautics (AIAA), Aerospace America, because we won a $500 grant to help build our remote-controlled aircraft.

6. Major Grant Win

Is it just me that believes in our outstanding Providence engineering program? Is it just the university lecturers who receive our already-highly-trained students? Am I just blowing my own horn over here? Apparently not! The Toshiba America Foundation decided that our second-semester robotics project was something worth funding, and we are pleased to announce that over $4,000 of the very latest in classroom robotics equipment will soon be arriving on campus. This will be put to use in our Mars Rover project, where different student teams will design, build, and code different components of one big vehicle. I’m looking forward to this one. Thanks, Toshiba!

One of the advanced Vex V5 sets: coming soon!

As always, stay posted for more exciting announcements. Our junior engineers are doing something very different, but making the most of it. I’m confident that their skills and experience will remain at the very highest level amongst similar programs in our area. Keep it up, students!

–Mr. Meadth

Designed, Built, Flown!

You can’t choose the hand you’re dealt, but you can play it to win every time.

Along with every one else around the globe, the Providence Engineering Academy was dealt a tough hand in March. Having worked so hard in the lead-up to the major capstone project—to design, build, and fly a powered tethered aircraft—being asked to complete the project from home was not the situation that anyone wanted. But in the spirit of problem-solving, our junior and senior engineers faced up to the challenge. After all, what is engineering all about if not solving problems?

Our last post on this project ended with the four teams designing various aircraft components using professional-grade CAD software. They had sent their designs to Mr. Meadth, who began to 3D print their fuselages and tails, cut their carbon fiber, and CNC mill their wooden wing ribs, all from the comfort (?) of his garage.

The garage workshop: where the magic happens!

Over the course of several weeks, each team’s delivery bag in the garage began to pile higher and higher with these manufactured components, along with advanced electric motors, lightweight lithium batteries, tissue paper, and other bits and pieces. Every last one of these components had been accounted for in duplicate: in a virtual CAD model and a complex spreadsheet. The CAD model held the actual design for manufacture, visualization, assembly guarantee, and mass/center-of-gravity prediction. The spreadsheet calculated wing and tail lift, which in turn yielded a force and moment balance, and also a redundant center-of-gravity prediction. (Redundancy is not a negative word in aircraft engineering!)

Quick science lesson: the center of gravity (c.g.) is where the sum of all weight is located. In other words, it’s the point at which you could balance the aircraft on your finger, or where you could hang it from a string. It is determined by the masses and locations of the individual components, and it was critical that our uncontrolled aircraft had the center of gravity forward of the wing’s lift force. Without going into the deeper explanation, having the center of gravity as close to the nose as possible means that the aircraft will be self-correcting and stable as it flies. Try attaching a paperclip to the nose of your next paper aircraft and note the dramatic improvement! This is why we ran two separate c.g. calculations using two different method—we wanted to absolutely confirm before manufacture.

Fresh off the printer, ready for delivery!
Sam and Josh work on RUBYGEM, papering and
doping the wings

Mr. Meadth delivered each team’s bag directly to their respective homes. Upon arrival, each team worked hard to assemble the aircraft. This involved inserting carbon fiber spars into 3D printed wing boxes, stringing the wooden ribs evenly along the spars, covering the ribs with tissue paper, and then applying dope (a kind of water-based glue) to the paper. The doped paper dries and hardens into a kind of thin shell. The various electronics components were also connected and secured, along with the tail and undercarriage (landing gear).

At the same time, the simple tethering system had to be designed and implemented. The wooden stand sits in the middle of the flight path, and a 3D printed bearing served as an anchor point for the tether line. The tether was then attached to the wingtip. Some of the aircraft needed a little more rigging to ensure that the centripetal force didn’t rip the wingtip loose!

Fast forward to the big day. Mr. Meadth made a final decision to hold the test flights in the gym, instead of outside. The smooth floor would take one more variable out of the equation, and the enclosed space would keep out any stray gusts. When your plane only weighs about 2 pounds and floats on the breeze, a gentle wind can be your worst enemy!
Thanos steps on to the court!
First up to the plate was Nolan and Pedro. Their purple and grey monoplane had a planned weight of 800 grams (less than a liter of water). The wingspan was a fairly standard 1.06 meters (a bit more than 3 ft), with a conventional tail style and taildragger undercarriage. Mr. Meadth tied their aircraft to the tether as the excitement mounted, and Pedro took the first turn at the controls. A gentle increase on the electronic throttle, and the affectionately named Thanos rose up beautifully into the air! Nolan took a turn as well, and the team scored two successful take-offs and two successful landings—the ideal outcome!
Plan view of Thanos, taken from the CAD model
Next up was Madison and Alena. Their Airplane Baby was ready to take its first steps, with Alena at the helm. In various shades of baby blue, the 540 gram winged wonder stretched out at an impressive 1.2 meter span (about 4 ft). Their wing aspect ratio (the ratio of wingspan to chord length) was a very healthy 12, almost double that of some other teams. But would it fly?
Airplane Baby gets ready to roll!

The girls produced a set of plans for their
written report
Without a doubt! Both Madison and Alena toured the gym in a somewhat rollercoaster fashion, the tether line being stretched to its limit. We estimated just a couple of feet clearance between the aircraft and the walls—enough to make any pilot sweat a little! But after a safe landing, all was well.
And now a little math. Replaying the video, it looks like Airplane Baby took about 3.5 seconds to complete a lap. If the diameter of the circle was about equal to that of the basketball court (50 ft), then the radius of the circle was half that: 25 ft. The speed of the aircraft through the air is equal to distance over time; the circumference of the circle divided by the time to get around that circle.
Circumference = 2π × radius = 157 ft
Speed = distance/time = 157/3.5 = 45 ft/s
This was about 36% faster than their design speed of 33 ft/s, which only goes to show that their stable aircraft design works just as well under a variety of situations. (It may also mean that their wings weren’t as effective at generating lift as theorized!)
Sam and Joshua took to the floor after that, with a slender red aircraft tied to the tether: RUBYGEM. With a planned mass of 440 grams (almost exactly one pound), this was the lightest plane on display. Their rectangular wing planform spanned 1.08 meters, and they planned to fly at only 8 meters per second (26 ft/s). A lighter aircraft does not need as much lift to stay in the air, and so for any given wing design, it can fly slower and still generate the force it needs.
RUBYGEM steps out in style
As RUBYGEM gracefully lifted into the air, it was obvious that she indeed favored a slower style of things. Completing each lap in almost 5 seconds, the flight speed can be calculated at 33 ft/s. This is also faster than their design speed, which reinforces the theory that perhaps there is more inefficiency in the design than our theory accounts for. Sounds like real life, all right!
After successful landings, Mr. Meadth made the decision to head outside with the fourth aircraft: Big Wing Boy. And boy, was it big! At over 2 meters (6.5 ft) span, this multi-colored monoplane was just too big to spread its wings indoors. It was also designed to fly a little slower, and was very light for its size: 800 grams.
Big Wing Boy, taken from the design report

There was, however, one significant issue: while the design looked good in the CAD model and spreadsheet, the greater spans and sizes meant the physical attachment of the parts was just that much more difficult. The sheer size tended to stress the wing root joints more, so extra tension lines were strung between wingtips to help hold everything together.
Being outdoors on the grassy field, the decision was also made to give the aircraft a running hand-held start, because the wheels get caught in the grass. Risky? Yes! Mr. Meadth held Big Wing Boy aloft and kicked off his shoes to get the best launch speed possible. Given that an Olympic runner travels at around the 10 m/s mark, finding the necessary design speed of 8 m/s would be a challenge!

Ben cranked the throttle to a healthy roar, and Mr. Meadth began to dash around the circle. With a final push into the air, B.W.B. lifted up into the great blue yonder where he belonged. All seemed well… and then the unthinkable! Video footage analysis confirms that the carbon fiber stick connecting the wings to the tail tore loose from the aerodynamic loads, and no plane can ever do well without that stabilizing influence. This principle was, in fact, one of the central pillars of the second semester!
The moment of horror as the tail comes loose!
The aircraft wanted to perform, but just couldn’t remain aloft. It plowed into the grassy field after only a few seconds of genuine flight. A quick repair and a repeat attempt was launched shortly thereafter, but another half-lap was achieved with similar results—with more permanent destruction this time! There was no third flight.
At the end of the day, what did we learn?
  1. Challenges are there to be overcome. The project could have modified to be easier, simpler, more virtual, you name it. But that kind of logic doesn’t get you into the history books, and doesn’t give the same kind of satisfaction. Greater levels of determination can turn challenges into victory.
  2. Theory is useful, but doesn’t account for everything. Math and physics equations and computer simulations are incredibly useful, and with high-level manufacturing can be a very good analogy of the intended outcome. But the fact is that our theoretical calculations didn’t account for a great many factors. This makes it all the more important to create robust, stable designs. The aircraft didn’t perform exactly as intended, but they did perform in the real world.
  3. Aircraft need firmly attached tails. You may want to check the welds next time you hop on board your next 737.
Congratulations to our eight aircraft engineers, and many blessings on the four seniors, now alumni: Ben, Todd, Alena, and Madison. You have completed something to be proud of!

Design, Build, Fly!

Our students can’t be together in person right now, but nothing is going to stop them finishing the capstone design/build/fly project for the 2019-2020 year. With digital tools in their hands and computer-controlled manufacturing equipment at the other end, our budding engineers, now sheltered in place, are experiencing the reality of a modern workflow. Even before the advent of COVID-19, many companies routinely collaborated from around the globe, producing advanced designs using international teams. Although not our first choice of preference, we’re taking the challenge head-on!

Mr. Meadth teaching aircraft stability via Zoom
The first step for our skillful students was to learn the ins and outs of classic aerodynamics. In January, February, and March, the eight juniors and seniors studied airfoil behavior, lift and drag equations, and learned how to use weighted averages to find the center of gravity of a complex system. Our team learned the different parameters of airfoil design, and used virtual wind tunnel tests to predict just how those airfoils would respond in real life.
The virtual wind tunnel program XFoil: a classic
historical aerospace simulation! Note the cambered
airfoil shape at the bottom, with the yellow boundary
layer on top and the blue one below
Even more important was the notion of stability. What makes some physical systems stable, and others unstable? The incredible hexacopter drone that emerged in the first semester was inherently unstable, which means that it will rapidly flip and roll and fall out of the sky if the onboard computer-controlled gyroscopes were to stop doing their job. The gyroscopes sample the position and orientation of the drone dozens of times per second, and send minor corrections to the six motors, all without the pilot on the ground ever knowing it. Stable drone flight is an astounding human accomplishment, powered by calculus and implemented by technology, but it is not inherently physically stable.
On the other hand, the powered fixed-wing aircraft in this project must be physically stable. Tethered to a central post and flying continual circles, the aircraft will have only one remote-control channel controlling the power to the motor. There are no ailerons, elevators, rudder, or flaps. Without moveable control surfaces, the aircraft must be designed to constantly self-correct all by itself. If the nose dips down a little because of a gust of wind, it must automatically seek to find level again. If it rolls a little too much to one side, it needs to roll back again. The principles involved hold true for most common vehicles: cars, bicycles, even the caster wheels on supermarket carts.
Having mastered the physics involved, the students set about the difficult task of starting their design. No kits, no instructions, no fixed starting point! In teams of two, the students created a complicated spreadsheet filled with graphs and tables and physics equations, listing masses and locations and forces and moments. The students also designed a multi-part CAD model according to those numbers using the professional-grade online platform Onshape; ideally, the CAD model, the spreadsheet design, and the manufactured plane itself will end up as three matching representations of the same reality.
Pedro’s and Nolan’s aircraft in its complete form
The same aircraft in an exploded view
Mr. Meadth ordered in the necessary tools and materials for construction: carbon fiber bars and tubes, balsa wood, lithium-ion batteries, electronic speed controllers for the advanced motors, propellers, wheels, and filament for the 3D printer. These materials were fully paid for by a generous grant from AIAA, the American Institute of Aeronautics and Astronautics. AIAA believes strongly in encouraging the work done by K-12 schools in advancing aerospace education, and Providence School has received similar grants in the past.
The delivery of the critical
components arrives!
Through the COVID-19 distance learning experience, the four teams produced their designs without ever meeting in person with each other or the teacher. Because of Zoom lessons, shared spreadsheets, and the powerful collaborative nature of Onshape, this project didn’t skip a beat. Mr. Meadth set up a manufacturing station in his own garage, and busily set to work producing what the students had designed. The CNC (computer numerical control) machine carved out flat balsawood ribs with exact length, thickness and camber dimensions, and the Raise3D 3D printer produced the three-dimensional components such as fuselages and tail.
The Providence Engineering Academy
manufacturing facility!
A completed wing rib from Ben and Todd, with
carbon fiber spar inserted
The vertical tail for Nolan’s and Pedro’s aircraft,
over nine hours in the making!
The huge 30-hour print of the fuselage/
wing box (lots of temporary support
material can still be seen

Ready for clean-up, delivery, and assembly! The
motor and one propeller option are in the background

Where to from here? The Advanced Engineering II students will receive deliveries of their manufactured pieces, to be assembled at home. Test flights, possible redesigns, and the final maiden voyages are scheduled to happen in late May—stay posted for the culmination of this exciting story!

Coding Champs!

The following article appeared in the Santa Barbara News-Press on the 7th of January, written by Christian Whittle.

When Freshman Ruby Kilpper and sophomore Sydney Whited of the Providence School high school set out to develop an app for the Congressional App Challenge, they had a lot of ideas and not much time to choose one.

“We kept narrowing it down based on our skill level, what we thought we could do, and how much time we had,” said Sydney.

Eventually the two settled on Santa Barbara Volunteer Opportunities, a way for high schoolers to find volunteer opportunities in the area. And after a month of dedication their hard work paid off, winning the app challenge in Rep. Salud Carbajal’s 24th Congressional District.

Ruby and Sydney received the Congressional App Challenge award from Mr. Carbajal on Monday.

The annual coding competition for students was created to increase congressional awareness of computer science and STEM fields (science, technology, engineering and math).

Mr. Carbajal brought the two students to his Santa Barbara district office to honor their achievements and invite them to a reception at the House of Representatives in Washington, D.C.

“It’s a great opportunity to provide to our constituents and our young people, and it’s really cool to have young people from your district represented in Washington. We’re all very proud of you,” said Mr. Carbajal, D-Santa Barbara.

The pair are students in the Providence Engineering Academy. Launched in 2015, the academy, led by Rodney Meadth, serves as a springboard for students considering a career in math, science, or engineering disciplines. Participants enroll in specific classes from ninth through 12th grades.

Santa Barbara High School students won the challenge last year, but Providence stepped up the competition in 2019 by submitting eight projects.

“We’ve never gotten so many projects submitted from one school in particular, so obviously your teacher and your school had a lot to do with it and it just makes me feel really good about our future, the fact that you have a local school who’s really promoting coding,” Mr. Carbajal told the students.

The app Ruby and Sydney created for the competition, the Santa Barbara Volunteer Opportunities app, allows local nonprofits to post opportunities to serve, with details about age and time requirements, location, and the work needed from volunteers.

Users can use the app when they are interested in finding somewhere to serve. The pair wrote the app’s script in Java with 500 lines of code, and designed it mainly for use by high school students.

Sydney and Ruby were inspired to make the app by Providence’s annual day of service, in which students volunteer around the city, as well as Sydney’s experience volunteering with her mother for the Santa Barbara chapter of the National Charity League.

“I think it’s a great requirement to go out and serve your community, but sometimes it can be difficult to find opportunities to serve,” Ruby said.

The pair wanted to create a platform where students can reach out to organizations on their own to find different opportunities that work for their schedule and interests.

“We wanted to create an app that made the process easier and overall better for our community,” said Ruby.

“This was very innovative,” said Mr. Carbajal. “My staff and I, we went through them all, and yours was clearly at the top early on because it’s just so practical, and it’s so user friendly.”

Although they had some experience coding, it was the first time either of them had worked with Java. Sydney had tried coding in middle school and didn’t take to it, but this time around she and Ruby had a lot of fun. Both have been inspired to continue learning about coding as they think about college and the future.

With the limited time to come up with a concept and develop the app, Sydney and Ruby weren’t able to fit in every feature they wanted, like a search bar and map. Nevertheless, they’re proud of what they were able to accomplish.

The SBVO app is still in the development and testing stage and is not yet available for download, but Ruby and Sydney are considering finishing the project despite the Challenge having ended.

Established in 2015, the Congressional App Challenge is considered to be the most prestigious prize in student computer science, according to the CAC website.

Members of the House of Representatives host contests in their districts for middle and high school students, encouraging them to learn to code and inspiring them to pursue careers in computer science.

Participating House members each select a winning app from their districts, and each winning team is invited to showcase their winning app at the U.S. Capitol during the annual #HouseOfCode festival in the spring.

Since its inception, the CAC has inspired more than 14,000 students across 48 states to program an app. In 2019, 10,000 students registered for the competition, 2,177 created and submitted functioning apps, and 304 House members chose winners from their districts.

Sydney and Ruby will receive a $250 Amazon Web Service Credit. Their app and their names will be displayed on the Congressional App Challenge website. The House of Representatives reception will be the second time Sydney and Ruby have visited the Capitol, after an eighth-grade field trip to the city.

“Now you get to go back as winners!” said Mr. Carbajal.

email: cwhittle@newspress.com

Major Project: Hexacopter Drone

(The fifth in our student blog series, written by Sam in 11th Grade, is followed by the teacher’s two updates on the project, so please read all the way down! Flight tests were finally successful, as students and teacher alike learned the hard realities of “going back to the drawing board!”)

While we don’t plan on taking him to the sun, Icarus was the name we selected for our massive hexacopter drone. With a 31-inch diameter, and the theoretical ability to lift almost two pounds on top of its own five-pound weight, it is operating at the higher end of recreational drone constraints. Most commercially available drones today feature only four propellers, and a mass of around one pound.

Early sketches of the design, with design priorities listed on the side

When we were designing “Thiccarus” we decided to push the boundaries with the materials we had available. A hexacopter design, as opposed to a more common quadcopter (a standard recreational design with four propellers), gave us more lift power and stability with a trade off on speed and maneuverability. To reduce weight and maintain strength Thiccarus would be constructed with 3D printed body parts and carbon fiber struts connecting them. However, when we were brainstorming, we decided that our drone’s primary function would be cargo delivery (despite my suggestions to make it into a fishing drone or a laser-toting drone with a search and destroy mission).

Pedro, Nolan, and Joshua tear apart
old quadcopter drones from two years
ago–fare thee well!

We came up with our design, then our constraints and requirements. After this, we split into design teams, each headed by ”captains.” After the protective shrouds around each propeller and control center base were decided upon, we set to starting a joint Onshape project. Onshape is our 3D design platform of choice for this project. Each team member was assigned one component of Thiccarus to design, and it came together well in a collaborative fashion. Each member of the design team is able to see in real time how their part will integrate with the other parts, which is incredibly helpful.

The eight students work concurrently on the drone CAD model,
with each one instantly able to see how their component fits into
the broader scope

The hexacopter design emerges!

The largest and most difficult piece to print: the central electronics
platform; five or six attempts at printing were required

Icarus is currently in the printing stage, and when it is fully constructed, it will be mounted with two cameras feeding to a battery powered LCD screen. Steered by the controller, it will be capable of flying high and low to deliver small payloads.

(Sam’s article was written in early October. After a delay in printing production due to some technical difficulties, the entire drone was finally fully assembled and taken for some early test flights. And now the update—which gets a little technical…)
After many hours of printing and assembly…

Sam, Ben, and Todd carefully attach
the motors and batteries and other
electronic components

The 8th Period engineering class proudly marched their huge drone out to the Providence soccer pitch. Gentle (and safe!) power-ups in the classroom had proved troublesome, with erratic behavior being immediately apparent. The drone was very touchy, and tended to spin around and roll to one side. Cutting the throttle from even six inches of altitude caused the aircraft to fall with a ungraceful “thump”, with small 3D-printed pieces occasionally breaking off.

Alena gave an insightful suggestion that we could take it outside and stretch out a big sheet of fabric to catch the drone as it fell. This would allow us to try to gain more altitude—and more time to evaluate its behavior and get it under manual control. The soft fall into the fabric would certainly keep both drone and students completely safe! As an added bonus, we would look comically like cartoon fire-fighters.

The group heads outside to try an initial flight: safety goggles on!

And look like cartoon fire-fighters we did! The plan worked rather well, except for Ben slipping accidentally in a mud patch on the field in his zeal for saving the drone. With the extra flight altitude and time, we learned that the machine wanted to spin on its vertical axis—absolutely out of control. Where it should have lifted gingerly into the air and hovered obediently, it was a veritable whirling dervish, and the group could not even agree on their recollection of whether it had spun clockwise or counter-clockwise!

It may look like the class is flinging it into the air—we promise
it is actually flying!

In a typical situation like this, the pilot should be able to add in some “yaw” trim. This means that the controller is set to always provide a little bit extra of yaw control, intended to counteract whatever is naturally happening and make everything balance out again. But adding yaw trim in either direction just didn’t change anything, and after one particularly wild spin the drone fell outside of the fabric and broke one of its 3D-printed propeller shrouds.

See that tilt to one side? About three seconds later Thiccarus
successfully escaped our circle of friendship!
Back to the drawing board…

  1. It is possible that the flight controller—the 1-inch small box that houses gyroscopes and inputs and outputs and magnetometers and so on—is just misbehaving or badly calibrated. But after several recalibrations and trying an alternate one that we had in stock, there was no improvement. Check.
  2. Is Thiccarus just way too “thicc”? Maybe. We could have designed more aggressively, and perhaps brought him down to 2 kg even (4.4 lb). But the specs say that each motor should be able to create up to 550 grams of thrust. With six motors in total, that’s 3.3 kg of thrust available (7.3 lb). And it’s definitely getting off the ground, even with the thrust output turned down for safety. So: check.
  3. It is possible that one or more motors are just misbehaving or getting bad signals. Tiny, threadlike wires carry the commands between the different components, and we have run into problems of this nature before. But replacing one bad cable fixed that, and simple individual motor bench tests show snappy, responsive motors that will blow your papers away from across the room.

When all else fails, Google it. Apparently, when your drone experiences untrimmable yaw, it is likely the result of not having set all motors perfectly level. In other words, one or more propellers might not be perfectly flat relative to the ground, but tilted slightly to one side. And yes, this is quite noticeable on poor old Thiccarus once you look for it. Fortunately, it can be easily solved by readjusting the four screws that hold each motor down, and putting a little “shim” on one side to nudge it up to level.

This is actually an interesting application of standard high school trigonometry. If a thrust vector is pointing straight up to sky, well and good. This is what the flight controller is banking on for its power distribution calculations. But if a motor is tipped to one side by even two or three degrees (barely perceptible to the eye), the aircraft will experience a mysterious lateral force equal to the thrust times the sine of the angle. If the motor is generating a healthy 500 grams of thrust (a little over a pound), three degrees of tilt creates 26 grams of sideways thrust (500sin3°). Small but significant—and the flight controller is not accounting for it.

Maddening: yes. Fixable: absolutely. The motors will be checked and adjusted, and Thiccarus will be bandaged up and flown again. It is also very likely that a Mark II design will surface in the second semester, with higher tolerances for motor angles accounted for from the very beginning and a lighter airframe. Less airframe weight means longer flight times, a more responsive drone, and a greater possible payload.

Providence Engineering Academy: carry on!

(Our final update for this story on the 19th of November.  Spoiler alert: it’s a happy ending!)


As promised, the motors were checked and adjusted. Ben and Mr. Meadth stayed after school and carefully placed pieces of card under this or that side of the motors to shim them up, bringing them as close as possible to vertical. Three motors were in need of adjustment, but none of them were out of line by more than about two or three degrees.

The drone was powered up, with high hopes… but the end result was exactly the same. Thiccarus wanted to flip over to the side and rotate faster and faster, and nothing could persuade him otherwise. Forget flying too close to the sun—Thiccarus couldn’t even get off the ground!

And then…

And then

Mr. Meadth had his flash of inspiration, and it all came down to this image:

The source of all problems.

This diagram shows the initial wiring and setup instructions from the flight controller. A certain teacher thought he had carefully followed the diagram; unfortunately, he had set the actual propeller directions all opposite. For example, propeller 1 was supposed to be rotating clockwise, but it had been set up to be counter-clockwise.

What’s the big deal, you ask? Well, while having everything opposite would still be balanced to some degree, the flight controller uses the spinning propellers to control its yaw. Say the craft wants to yaw to the left, it chooses a propeller to spin faster to the right (like propeller 1), and Newton’s Law of Reactions takes over. If it wants to yaw to the right, it might choose a left-spinning propeller to do that (like propeller 2). But since each and every one was backwards, the corrective actions it tried to take were in every case making the situation worse. If it started drifting left, it would end up spinning more left—a classic vicious circle if ever there was one.

A quick click of a checkbox in the computer and that was solved. All propellers: backwards. Oops.

Propellers… spinning the correct way!

You know you’re doing something
right when you’re looking at the bottom
of the drone

This portable outdoor screen receives
video input from two onboard cameras

Today marks another successful series of flights. We currently get about ten minutes of air time with two fully charged batteries. Three students plus teacher have been brave enough to fly around a little bit. No major accidents—perhaps a leg snapping off here or there with a rough landing!

Lessons learned:

  1. Persistence pays off. If this is a thing that can be done, then you can do it. Just get out there and keep troubleshooting until you work it out.
  2. This is a new era of high school education. To collaborate on a CAD model, 3D print it, order the electronics, and create a hovering 2.2 kg monstrosity in the space of three months is just not something a school could have done in-house ten years ago. Truly these are amazing times!
  3. These students are capable. With the right leadership and direction, they know how to think and problem solve and calculate and design. They will go far.
The story ends here, but keep an eye out for Mark II! We just can’t resist. There are already so many things that could be optimized (chiefly, stronger airframe and lighter weight). Lighter weight means more air time, so bring it on! Look out for Son of Thiccarus in the second semester, and until then, stay posted.