Classroom Standing Desk: Delivered!

 We’ve written on this blog about the completion, delivery, and feedback for PathPoint’s wheelchair computer desk, but what about the other project intended for Mrs. Jones? We’re glad to report that this project has now been constructed, assembled, and painted according to the student plans and delivered to a grateful 4th grade teacher!

Like all of our COVID-friendly projects this year, the design work was done by students: Alan, Davis, Eliana, Isaiah, Kaitlyn, Kassy, Sam, Zach, and Pedro. Their original concepts were submitted as sketches and miniature models back in October 2020.

Alan’s early LEGO concept (October 2020)

Mrs. Jones reviewed these concepts and filtered out the ones that were less suitable. The result of this, plus another online design charrette, was a series of simple sketches and a collaborative CAD model in Onshape, which can be accessed here.

The result of a design charrette in December 2020
The final collaborative CAD model emerges

Mr. Meadth acted as fabricator for this project, with Zach in 11th grade contributing a beautiful hand-finished red oak table surface. Angel, while not an actual member of this project, worked after school to attach caster wheels and paint according to Mrs. Jones’ requested color scheme.

The linear actuator motor, intended as a replacement for an
armchair recliner and capable of over 150 lb of force
The actuator is sandwiched between
two pieces of plywood
Zach’s table surface attached and
actuator extended
In retracted position

From the very beginning, these mechanical furniture designs needed to closely follow the advice given over two thousand years ago by the Roman architect, Vitruvius. Vitruvius was primarily concerned with buildings for home and public use, but his timeless principles seem to fit this project particularly well: firmitas, utilitas, venustas. Translated as “strength, utility, beauty”, this triad neatly underscores the challenges and requirements of Mrs. Jones’ desk.

Strength: Can a desk be put on wheels and still be stable and secure? How can you design a desk that changes its size and shape without risking damage to users and their property (like a laptop that slips off and smashes!)? When will a cantilever design be so audacious as to become a tipping hazard?

Utility: What features are necessary and useful for any teacher? How to incorporate a maximum amount of storage while allowing room for the electrical mechanism? What are the exact heights that Mrs. Jones requires for her sitting and standing? How much desk space is enough?

Beauty: How do you hide away the necessary mechanical equipment? What should be the focal point of this design to catch the eye? What color and trim will best fit a classroom and suit the client?

Carving out a shallow hole for the wooden handle
The wooden handle structure ready for installation
(note the dowels and holes)
A strap clamp to secure the handle while gluing

Angel attaches the caster wheels

The rubber stoppers are screwed into place after painting
With the door and shelving installed, this is ready for delivery!

In March 2021, after six months of work, it was finally time to deliver the finished product. With the help of Mr. Knoles, the Lower School Principal, Mr. Meadth surprised the entire class one morning with the desk delivery. Mrs. Jones was delighted to receive the desk, and promptly filled it with her hefty teacher editions—which definitely helped as a counterbalance to the cantilever design!

The crew proudly presents their product!
Mr. Meadth surprises Mrs. Jones with the
finished desk!
“So I just press here…?”
Loaded up and ready to go in 4th grade
This project shows us once again that engineers, mathematicians, scientists, and technologists are uniquely poised to love those around them. As we often discuss in the Providence Engineering Academy, it is only those with a particular type of training and set of skills who can turn good intentions into deliverable outcomes. To quote Christian philosopher Etienne Gilson, “piety is no substitute for technique.”

Thank you, Mrs. Jones for allowing us to partner with you in such an interesting project this year. It was an admirable test of the students’ skills as they sketched concepts, designed CAD models, collaborated interactively, calculated forces and moments, and put saw to wood. Well done to each student who contributed—you are accomplishing great things.

Update: Wheelchair Computer Desk Feedback

 Back in February, we posted a blog describing the completion and delivery of our wheelchair computer desk to PathPoint. After a few weeks, we were finally able to get Mr. Meadth and Mr. Gil Addison together with his team to go over the design and get that long-awaited feedback.

Feedback from the end user is critical to the entire design process. For this particular project, the Academy had all sorts of unanswered questions: will the design function as requested? Does the screen angle suit a typical wheelchair user? How convenient is the keyboard position? Is the mechanical motion safe enough for general usage? Would a typical PathPoint resident be able to operate the remote control? What improvements could be made? While we don’t currently plan on producing a Mk II, one project often leads into another and we improve our products by understanding their strengths and weaknesses.

Gil Addison (far right) together with his grateful staff

Mr. Meadth (center) joins in for the camera

Gil met Mr. Meadth together with six of the PathPoint staff members and together they went over the particulars of the design. You can watch the entire footage here, and a summary of design points is also included below.

As we draw this project to a close, thank you to PathPoint for being willing to work with us in an ongoing fashion! May our students always be inspired to use their God-given gifts with training and understanding, and we hope that the PathPoint residents are blessed through this simple gift.

Design Feedback

Screen Angle: Although the older iMac that was tested tended to slip on its hinge, once kept in place, the screen was easily able to tilt downwards to any wheelchair user at a suitable viewing angle.

Gil tests out the seated angle

Standing Height: The PathPoint ambulatory staff members found the maximum standing height to be comfortable and sturdy.

PathPoint staff test the standing height

Motor Function: Although the motor sounds like it is straining to raise the desk, and there is a slight but noticeable bending of the wooden attachment, the motor appears to be able to operate the desk satisfactorily.

Desk Size: The PathPoint team felt that the final desk size was a little smaller than they would have liked; although the keyboard and mouse did fit on it, there was not much room to move the mouse. Possible solutions: use a trackpad instead, attach a larger plywood sheet to that desk, or rebuild that component.

Operability: It is very easy for an ambulatory user to operate, although the small remote with small buttons may be difficult for some users. The desk adjustment at the front might be hard to operate, but it probably doesn’t need to be used often after being set in one position. Possible solutions: rebuild the remote with larger buttons that still trigger the same microswitches, build an app that uses the same remote frequency.

Other Improvements: The iMac base barely fit under the clamp; the wooden piece at the back that gets in the way could be chamfered down. The same wooden piece that flexes slightly could be doubled up. A spherical router bit could carve out a channel in the desk for the keyboard to fit into. The carriage bolts for the rear clamp could be longer to permit a thicker desk.

Wheelchair Computer Desk: Delivered!

 Following on from our last post, we’d like to provide an update: the custom computer desk for Gil Addison at PathPoint was recently delivered, bringing that particular project to a close. This desk raises up and down to any given height using an electrically driven linear actuator. The wheelchair user carries the remote control key fob, allowing complete adjustment from near or far. The desk is intentionally designed to tip the computer forwards to face down towards the user, as many wheelchairs seat the occupant in a reclined position.

You can play with the online CAD model here.

At the time of this writing, we are still waiting for feedback on the end result and photos of the desk in action. But in the meanwhile, enjoy some photos of the students as they put together the final product and examined the results. Thank you, Gil, for helping us execute such a meaningful project!

The final product assembled in the workshop, after some
final modifications. The actuator placement had to be changed
in order to create more torque to lift the table.

After disassembly, Nolan (senior) set to
work applying the protective oil to the
upper table surface

Abby (freshman) oils the lower base piece

After all pieces were oiled, Angel (sophomore) reassembled
the entire structure together with Mr. Meadth

A few more bolts to go–almost there!

The finished product as attached to a typical household
table, keyboard shown

The finished product in the full lowered position

Teleios, Hunter, and Abby (freshmen) get their first
look at the end result on the day of delivery

Joshua and Nolan (seniors) test out the remote control

The whole team from left to right: Hans, Abby, Hunter,
Teleios, Mr. Meadth, Angel, Joshua, and Nolan
(James was also in this group); note an iMac computer
attached as per intended use

Service Project: Mechanical Furniture

Freshmen Hans and Hunter, tools out

Even in the midst of a global pandemic, the Providence Engineering Academy follows a particular philosophy that transcends circumstances. While many robotics clubs and engineering programs might teach physics, maker skills, CAD, and more, we believe that these elements—fascinating as they may be—are only the means to an end. In the latest application form for the coming year, there are six “big ideas” listed; Big Idea Number 1 is that service matters:

As Christians, we have an obligation to turn our skills outward to the world around us; we learn not for our own sakes.

While we may not be allowed to mix cohorts or share equipment, the seventeen dedicated upper school students are committed to loving their community using their math, physics, coding, CAD, robotics, and maker skills.

Early on in the school year, we found two willing partners in this process: one was Mr. Gil Addison of PathPoint, an organization serving at-home and on-site residents, many of whom use a wheelchair each day due to their limited mobility. The other was Mrs. Christa Jones, 4th Grade teacher in the Providence Lower School. Both of these clients had distinct requests for custom-made furniture and it was the perfect opportunity for our students to put their new-found statics knowledge to the test (statics is the study of physically balanced situations where the net force is zero, such as buildings and bridges).

Mrs. Christa Jones, 4th Grade Providence Teacher

Mr. Gil Addison, PathPoint

Mr. Addison wanted a custom-made desk for an iMac computer that could be set to a lower height for a wheelchair occupant, and then back up to a standing desk height for an ambulatory user. Such a desk is hard to find in the current marketplace, and the engineering students saw an opportunity to provide something uniquely useful. The desk would be mechanically driven by a remote control, safe for an individual with limited dexterity, and functional to hold the computer at any height without concern.

By contrast, Mrs. Jones needed a new teaching desk at the front of her room to help meet the new style of a COVID year. This mobile desk would need to be equally useful in a standing or sitting position, for maximum versatility with her in-person and at-home students.

How to meet the needs of these clients in a year when the Engineering Academy is functioning in an independent-learning mode? How could we hold a meaningful design charrette when mixing between cohorts is prohibited? How can seventeen students come up with an agreed-upon detailed design and communicate it with the clients?

Answer: with creativity, technological tools, and a great attitude!

The students began by watching pre-recorded videos from the clients as they described their requests and necessary constraints to Mr. Meadth, the Academy Director. Mr. Meadth offered up some quick sketches and ideas in the videos to help sort through what would and wouldn’t work.

Early notes for Christa Jones’ project

Early notes for Gil Addison’s project

The students then used LEGO and other construction materials to make quick miniature mock-ups of their ideas, along with sketches to help show functionality. The images were sent to the clients to help them think through the possible solutions at hand. Another round of recorded video reviews with the clients, and then the real design work began!

Alan’s rolling cart concept

Kaitlyn’s desk concept with extendable platforms

Together with Mr. Meadth, the students worked together over Zoom and in their grade level cohorts, using the cloud-based CAD tools from Onshape. With each student taking ownership of several parts from the whole, they worked collaboratively to produce something that could be presented back to client as a visualization and to the fabricator as dimensioned drawings. Teleios in 9th Grade can create the top part of the desk, Angel in 10th Grade can make the support struts, and Nolan in 12th Grade can design the platform for the keyboard. All team members can see how the pieces fit together in advance, spotting potential problems before a single cut is made. This kind of ease, speed, and confidence in the design process simply did not exist even five years ago, and we are glad for it!

(The computer desk for Mr. Addison can be viewed live here, and the rolling cabinet for Mrs. Jones here. Both models are interactive.)

Mrs. Jones’ rolling cart CAD model

Mr. Addison’s adjustable computer desk CAD model

So where are we today? After purchasing the plywood, oak, mechanical actuators, caster wheels, and other bits and pieces, fabrication is underway. The clients are now eagerly awaiting the delivery of their prototypes. Gil Addison’s computer desk is nearly complete at the time of this article, and Zach in 11th Grade has put together a beautiful biscuit-joined red oak desk surface for Mrs. Jones’ rolling cabinet.

James assembles the clamping mechanism for Gil’s design

Teleios and Abby show off the parallel linkages

Nolan with the mechanical actuator

The vision nears reality for PathPoint!

Zach’s red oak table surface (3 ft long)

We’ll update this blog site as the projects are completed and delivered. For now, we’re just glad to be able to continue our exciting mission through a pandemic and out the other side. The exhortation in I Peter Chapter 4 seems particularly apt:

Each of you should use whatever gift you have received to serve others, as faithful stewards of God’s grace in its various forms. If anyone speaks, they should do so as one who speaks the very words of God. If anyone serves, they should do so with the strength God provides, so that in all things God may be praised through Jesus Christ.

Keep on serving with the strength God provides, engineering students! You’re making us all very proud. 

Coding Champs!

The following article appeared in the Santa Barbara News-Press on the 7th of January, written by Christian Whittle.

When Freshman Ruby Kilpper and sophomore Sydney Whited of the Providence School high school set out to develop an app for the Congressional App Challenge, they had a lot of ideas and not much time to choose one.

“We kept narrowing it down based on our skill level, what we thought we could do, and how much time we had,” said Sydney.

Eventually the two settled on Santa Barbara Volunteer Opportunities, a way for high schoolers to find volunteer opportunities in the area. And after a month of dedication their hard work paid off, winning the app challenge in Rep. Salud Carbajal’s 24th Congressional District.

Ruby and Sydney received the Congressional App Challenge award from Mr. Carbajal on Monday.

The annual coding competition for students was created to increase congressional awareness of computer science and STEM fields (science, technology, engineering and math).

Mr. Carbajal brought the two students to his Santa Barbara district office to honor their achievements and invite them to a reception at the House of Representatives in Washington, D.C.

“It’s a great opportunity to provide to our constituents and our young people, and it’s really cool to have young people from your district represented in Washington. We’re all very proud of you,” said Mr. Carbajal, D-Santa Barbara.

The pair are students in the Providence Engineering Academy. Launched in 2015, the academy, led by Rodney Meadth, serves as a springboard for students considering a career in math, science, or engineering disciplines. Participants enroll in specific classes from ninth through 12th grades.

Santa Barbara High School students won the challenge last year, but Providence stepped up the competition in 2019 by submitting eight projects.

“We’ve never gotten so many projects submitted from one school in particular, so obviously your teacher and your school had a lot to do with it and it just makes me feel really good about our future, the fact that you have a local school who’s really promoting coding,” Mr. Carbajal told the students.

The app Ruby and Sydney created for the competition, the Santa Barbara Volunteer Opportunities app, allows local nonprofits to post opportunities to serve, with details about age and time requirements, location, and the work needed from volunteers.

Users can use the app when they are interested in finding somewhere to serve. The pair wrote the app’s script in Java with 500 lines of code, and designed it mainly for use by high school students.

Sydney and Ruby were inspired to make the app by Providence’s annual day of service, in which students volunteer around the city, as well as Sydney’s experience volunteering with her mother for the Santa Barbara chapter of the National Charity League.

“I think it’s a great requirement to go out and serve your community, but sometimes it can be difficult to find opportunities to serve,” Ruby said.

The pair wanted to create a platform where students can reach out to organizations on their own to find different opportunities that work for their schedule and interests.

“We wanted to create an app that made the process easier and overall better for our community,” said Ruby.

“This was very innovative,” said Mr. Carbajal. “My staff and I, we went through them all, and yours was clearly at the top early on because it’s just so practical, and it’s so user friendly.”

Although they had some experience coding, it was the first time either of them had worked with Java. Sydney had tried coding in middle school and didn’t take to it, but this time around she and Ruby had a lot of fun. Both have been inspired to continue learning about coding as they think about college and the future.

With the limited time to come up with a concept and develop the app, Sydney and Ruby weren’t able to fit in every feature they wanted, like a search bar and map. Nevertheless, they’re proud of what they were able to accomplish.

The SBVO app is still in the development and testing stage and is not yet available for download, but Ruby and Sydney are considering finishing the project despite the Challenge having ended.

Established in 2015, the Congressional App Challenge is considered to be the most prestigious prize in student computer science, according to the CAC website.

Members of the House of Representatives host contests in their districts for middle and high school students, encouraging them to learn to code and inspiring them to pursue careers in computer science.

Participating House members each select a winning app from their districts, and each winning team is invited to showcase their winning app at the U.S. Capitol during the annual #HouseOfCode festival in the spring.

Since its inception, the CAC has inspired more than 14,000 students across 48 states to program an app. In 2019, 10,000 students registered for the competition, 2,177 created and submitted functioning apps, and 304 House members chose winners from their districts.

Sydney and Ruby will receive a $250 Amazon Web Service Credit. Their app and their names will be displayed on the Congressional App Challenge website. The House of Representatives reception will be the second time Sydney and Ruby have visited the Capitol, after an eighth-grade field trip to the city.

“Now you get to go back as winners!” said Mr. Carbajal.

email: cwhittle@newspress.com